The role of input selection and climate pre-classification on the performance of neural networks irradiance models

Autores/as

  • Ilse Cervantes CENTRO DE INVESTIGACIÓN EN CIENCIA APLICADA Y TECNOLOGÍA AVANZADA (CICATA) QUERÉTARO
  • Omar Rodriguez Abreu Universidad Politécnica de Querétaro

Palabras clave:

energía solar, energía renovable

Resumen

Neural Network (NN) models are widely accepted in the derivation of solar radiation models due to their ability to adapt to various geographic and environmental conditions. Despite this, it is unclear what training variables are required to enhance the precision of the NN model or which of them could be considered redundant; therefore, this paper intends to clarify this issue by investigating if the Köppen climate classification could be used to substitute climatic measurements.

To this end, We analyzed a variety of NN architectures using 20 years of data from 1629 weather stations belonging to three different climate types (Climate A, B, and C). We found that Köppen climate sub-classification had a limited effect on the models’ performance when the information of all data types was processed together, resulting in barely noticeable improvements from 1.2% to 2.5%. However, if data were pre-classified according to climate type, the climate sub-classification input induced significant differences. Improvements up to 14% in the precision of the models were found for Climates B and A; moreover, temperature and relative humidity daily measurements could be replaced by Köppen climate information. Cross-validation analysis, using the same amount of data for all climate types, allowed us to confirm our findings for Climates A and B and revealed that data pre-classification according to climate type for Climate C, systematically increased errors from 10% to 24%, so replacing actual climatological measurements was not possible for this climate type.

Revealing such patterns would facilitate the derivation of models for scenarios of limited information on temperature and relative humidity in some locations and reveals the usefulness of soft computing to go beyond understanding climate complexity.

Biografía del autor/a

Ilse Cervantes , CENTRO DE INVESTIGACIÓN EN CIENCIA APLICADA Y TECNOLOGÍA AVANZADA (CICATA) QUERÉTARO

PhD Mathematics-Automatic Control, 62 Journal Papers, 60 Conf. Papers, Head of Automotive Innovation Research Network of IPN (Instituto Politécnico Nacional), Editor-in-Chief IEEE Latin America Trans, Associate Editor IEEE Trans Transportation Electrificacion, Guest Editor-in-Chief «Control, Analysis, and Modeling of Vehicular Systems» in Mathematical Problems in Eng. (2014), Guest associate editor  special issues of IEEE Trans. on Power Electronics “Transportation Electrification and Vehicle Systems” (2013) and IEEE Journal of Emerging and Selected Topics in Power Electronics Special Issue on “Transportation Electrification” (2013), Organizing Committee IEEE Transportation Electrification Conference and Expo / IEEE Vehicle Power and Propulsion Conference, Senior Member IEEE, SNI III. 

Omar Rodriguez Abreu, Universidad Politécnica de Querétaro

Doctorado en Tecnología Avanzada 2023. Instituto Politécnico Nacional “IPN”CICATA Querétaro, México. 2020 Doctorado en Educación. Universidad IEXPRO Tuxtla Gutiérrez, Chiapas, México

2019 Doctorado en Mecatrónica. Doctorado en Ingeniería Mecatrónica. Universidad de Málaga “UMA” Málaga, Málaga, España.

2012 Maestría Máster en Ingeniería Mecatrónica Universidad de Málaga “UMA” Málaga, Málaga, España.

2010 Ingeniería Ingeniería Mecatrónica Universidad Politécnica de Pachuca “UPP” Zempoala, Hidalgo México

Descargas

Publicado

2023-12-21

Cómo citar

Cervantes , I., & Rodriguez Abreu, O. (2023). The role of input selection and climate pre-classification on the performance of neural networks irradiance models. LANCEI : Laboratorio Nacional CONAHCYT En Electromovilidad Inteligente, 1(1). Recuperado a partir de https://cv.cicataqro.ipn.mx/dsm/index.php/biocq/article/view/14

Número

Sección

Artículos

Artículos más leídos del mismo autor/a